Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Physiol ; 15: 1347093, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38516209

RESUMO

Introduction: There are several tests that provide information about physical fitness and functionality in older adults. The aims of this study were: (i) to analyze the differences between sex and age in functional, strength and cardiorespiratory tests; and (ii) to study the correlations between functional, strength and cardiorespiratory tests according to sex and age. Methods: A total of 171 older adults (72.09 ± 13.27 kg; 1.59 ± 0.09 m; 72.72 ± 6.05 years) were divided according to sex (men: n = 63; women: n = 108) and age (≥60 <70: n = 65; ≥70 <80: n = 89; ≥80: n = 18). Anthropometry, body composition, upper limb strength (hand grip; HG), lower limb strength (countermovement jump; CMJ), cardiorespiratory capacity (6 min walking test; 6MWT), timed up and go test (TUG) and Short Physical Performance Battery (SPPB) were assessed. Results: Men showed higher values in CMJ height, HG and expired volume (VE) (p < 0.05). There were no significant differences between sexes in TUG and SPPB. Regarding age, there were significant differences in CMJ, VE and peak oxygen uptake (VO2peak), TUG, gait speed, chair and stand test and SPPB total (p < 0.05). The test times were higher in older people. Regarding correlations, the TUG showed significant correlations in all strength and cardiorespiratory tests, regardless of sex and age. The CMJ correlated more significantly with functional tests compared to HG. Discussion: There were sex and age differences in functional, strength, and cardiorespiratory tests. The execution of quick and low-cost tests such as the CMJ and TUG could provide information on overall physical fitness in older adults.

2.
PLoS One ; 19(3): e0298859, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38512981

RESUMO

The aim of this study was to investigate the reliability and validity of an affordable wireless force sensor in measuring mean and peak forces during resistance training.A Suiff Pro wireless force sensor (Suiff, Spain) and a MuscleLab force platform (Ergotest, Norway) were used concurrently to assess tensile load and the ground reaction force resulting from an upright row exercise. Thirteen participants (28.2 ± 5.7 years, 76.2 ± 9.6 kg, 178.2 ± 9.2 cm) performed the exercise under three velocity conditions and isometrically. Each condition involved three sets of exercise. Mean (Fmean) and peak (Fpeak) force values from both sensors were collected and compared.Suiff Pro exhibited excellent reliability for Fmean and Fpeak (ICCs = 0.99). When compared to the criterion measures, Suiff Pro showed trivial standardized bias for Fmean (Mean = 0.00 [CI 95% = 0.00 to 0.01]) and Fpeak (-0.02 [-0.04 to 0.00]). The standardized typical error was also trivial for Fmean (0.03 [0.02 to 0.03]) and Fpeak (0.07 [0.05 to 0.09]). Correlations with the MuscleLab force platform were nearly perfect: Fmean (0.97 [0.94 to 0.98]; p<0.001); Fpeak (0.96 [0.92 to 0.97]; p<0.001).The findings demonstrate that the Suiff Pro sensor is reliable and valid device for measuring force during isometric and dynamic resistance training exercises. Therefore, practitioners can confidently use this device to monitor kinematic variables of resistance training exercises and to obtain real-time augmented feedback during a training session.


Assuntos
Aplicativos Móveis , Treinamento de Força , Humanos , Treinamento de Força/métodos , Reprodutibilidade dos Testes , Exercício Físico , Fenômenos Biomecânicos , Força Muscular
3.
Biol Sport ; 40(3): 805-811, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37398963

RESUMO

The purpose of this study was to investigate the validity of a low-cost friction encoder against a criterion measure (strain gauge combined with a linear encoder) for assessing velocity, force and power in flywheel exercise devices. Ten young and physically active volunteers performed two sets of 14 maximal squats on a flywheel inertial device (YoYo Technology, Stockholm, Sweden) with five minutes rest between each set. Two different resistances were used (0.075 kg · m2 for the first set; 0.025 kg · m2 for the second). Mean velocity (Vrep), force (Frep) and power (Prep) for each repetition were assessed simultaneously via a friction encoder (Chronojump, Barcelona, Spain), and with a strain gauge combined with a linear encoder (MuscleLab 6000, Ergotest Technology, Porsgrunn, Norway). Results are displayed as (Mean [CI 90%]). Compared to criterion measures, mean bias for the practical measures of Vrep, Frep and Prep were moderate (-0.95 [-0.99 to -0.92]), small (0.53 [0.50 to 0.56]) and moderate (-0.68 [-0.71 to -0.65]) respectively. The typical error of estimate (TEE) was small for all three parameters; Vrep (0.23 [0.20 to 0.25]), Frep (0.20 [0.18 to 0.22]) and Prep (0.18 [0.16 to 0.20]). Correlations with MuscleLab were nearly perfect for all measures in all load configurations. Based on these findings, the friction encoder provides valid measures of velocity, force and power in flywheel exercise devices. However, as error did exist between measures, the same testing protocol should be used when assessing changes in these parameters over time, or when aiming to perform inter-individual comparisons.

4.
J Strength Cond Res ; 35(4): 902-909, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33555833

RESUMO

ABSTRACT: Nuell, S, Illera-Domínguez, V, Carmona, G, Macadam, P, Lloret, M, Padullés, JM, Alomar, X, and Cadefau, JA. Hamstring muscle volume as an indicator of sprint performance. J Strength Cond Res 35(4): 902-909, 2021-This study aimed to compare mechanical properties and performance during sprinting, as well as thigh muscle volumes (MVs), between national-level sprinters and physically active males. In addition, the relationships between thigh MVs and sprint mechanical properties and performance were investigated. Seven male sprinters and 9 actives performed maximal-effort 40-m sprints. Instantaneous velocity was measured by radar to obtain theoretical maximum force (F0), the theoretical maximum velocity (V0), and the maximum power (Pmax). For MV assessment, series of cross-sectional images of each subject's thigh were obtained by magnetic resonance imaging for each of the quadriceps and hamstring muscles and the adductor muscle group. Sprinters were faster over 10 m (7%, effect size [ES] = 2.12, p < 0.01) and 40 m (11%, ES = 3.68, p < 0.01), with significantly higher V0 (20%, ES = 4.53, p < 0.01) and Pmax (28%, ES = 3.04, p < 0.01). Sprinters had larger quadriceps (14%, ES = 1.12, p < 0.05), adductors (23%, ES = 1.33, p < 0.05), and hamstrings (32%, ES = 2.11, p < 0.01) MVs than actives. Hamstrings MV correlated strongly with 40-m sprint time (r = -0.670, p < 0.01) and V0 (r = 0.757, p < 0.01), and moderately with Pmax (r = 0.559, p < 0.05). Sprinters were significantly faster and had greater V0 and Pmax than active males. Larger MVs were found in sprinters' thighs, especially in the hamstring musculature, and strong correlations were found between hamstring MV and sprint mechanical properties and sprint performance.


Assuntos
Desempenho Atlético , Músculos Isquiossurais , Corrida , Estudos Transversais , Músculos Isquiossurais/diagnóstico por imagem , Humanos , Masculino , Coxa da Perna
5.
Eur J Sport Sci ; 20(6): 793-802, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31526116

RESUMO

Abstract This study aimed to analyse changes in sprint performance, muscle volumes (MVs) and sprint mechanical parameters (SMPs) in national-level sprinters performing a 5-month indoor sprint-based training macrocycle (SBTM). Twelve well-trained sprinters were tested on three different occasions throughout the SBTM. Testing procedures included: sprint performance over 10m, 40m, 80m, 150m, and 300m; MRI of thighs, to compute MVs of quadriceps, hamstrings and adductors; and a 40m sprint using a radar gun to assess SMPs such as theoretical maximal horizontal force, theoretical maximal horizontal velocity (V0), maximal power and index of force application (DRF). Improvements in sprint performance of between 4% and 7% (ES = 0.46-1.11, P < 0.01) were accompanied by increments in: quadriceps of 6% (ES = 0.41, P < 0.01), hamstrings of 10% (ES = 0.62, P < 0.01), adductors of 12% (ES = 0.87, P < 0.01), V0 of 5% (ES = 0.40, P < 0.01) and DRF of 7% (ES = 0.91, P < 0.01). In conclusion, during the SBTM after the off-season, moderate hypertrophic changes occur in sprinters. Moreover, the greater increase in hamstrings and adductors, compared with quadriceps, might be related to the prominent role of these muscle groups in sprinting. Furthermore, the SBTM was likely effective at developing sprint performance in sprinters, thereby endorsing the idea that sprint-specific training is crucial for highly trained individuals. Finally, our results support the notion that V0 or the "velocity-oriented" force-velocity profile is determinant of performance in sprinters.


Assuntos
Atletas , Desempenho Atlético/fisiologia , Músculo Esquelético/fisiologia , Corrida/fisiologia , Aumento do Músculo Esquelético/fisiologia , Fenômenos Biomecânicos , Feminino , Músculo Grácil/diagnóstico por imagem , Músculo Grácil/fisiologia , Músculos Isquiossurais/anatomia & histologia , Músculos Isquiossurais/diagnóstico por imagem , Músculos Isquiossurais/fisiologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Força Muscular/fisiologia , Músculo Quadríceps/anatomia & histologia , Músculo Quadríceps/diagnóstico por imagem , Músculo Quadríceps/fisiologia , Coxa da Perna/diagnóstico por imagem , Fatores de Tempo , Adulto Jovem
6.
PLoS One ; 14(11): e0224862, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31689336

RESUMO

The purpose of this study was to determine and compare thigh muscle volumes (MVs), and sprint mechanical properties and performance between male and female national-level sprinters. We also studied possible relationships between thigh MVs and sprint performance. Nine male and eight female national-level sprinters participated in the study. T1-weighted magnetic resonance images of the thighs were obtained to determine MVs of quadriceps, hamstrings and adductors. Sprint performance was measured as the time to cover 40 and 80 m. Instantaneous sprint velocity was measured by radar to obtain theoretical maximum force (F0), theoretical maximum velocity (V0) and maximum power (Pmax). When MVs were normalized by height-mass, males showed larger hamstrings (13.5%, ES = 1.26, P < 0.05) compared with females, while quadriceps and adductors showed no statistically significant differences. Males were extremely faster than females in 40 m (14%, ES = 6.68, P < 0.001) and in 80 m (15%, ES = 5.01, P < 0.001. Males also showed increased sprint mechanical properties, with larger F0 (19%, ES = 1.98, P < 0.01), much larger Pmax (46%, ES = 3.76, P < 0.001), and extremely larger V0 (23%, ES = 6.97, P < 0.001). With the pooled data, hamstring and adductor MVs correlated strongly (r = -0.685, P < 0.01) and moderately (r = -0.530, P < 0.05), respectively, with sprint performance; while quadriceps showed no association. The sex-stratified analysis showed weaker associations compared with pooled data, most likely due to small sample size. In conclusion, males were faster than females and showed larger MVs, especially in hamstrings. Moreover, regarding the thigh muscles, hamstrings MV seems the most related with sprint performance as previously proposed.


Assuntos
Músculo Esquelético/anatomia & histologia , Corrida/fisiologia , Caracteres Sexuais , Coxa da Perna/anatomia & histologia , Fenômenos Biomecânicos , Feminino , Humanos , Masculino , Tamanho do Órgão , Adulto Jovem
7.
Front Physiol ; 9: 1265, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30246805

RESUMO

Purpose: To assess early changes in muscle function and hypertrophy, measured as increases in muscle cross-sectional areas (CSAs) and total volume, over a 4 weeks inertial resistance training (RT) program. Methods: Ten young RT-naive volunteers (age 23.4 ± 4.1 years) underwent 10 training sessions (2-3 per week) consisting of five sets of 10 flywheel squats (moment of inertia 900 kg⋅cm2). Magnetic resonance imaging (MRI) scans of both thighs were performed before (PRE), and after 2 (IN) and 4 (POST) weeks of training to compute individual muscle volumes and regional CSAs. Scans were performed after ≥96 h of recovery after training sessions, to avoid any influence of acute muscle swelling. PRE and POST regional muscle activation was assessed using muscle functional MRI (mfMRI) scans. Concentric (CON) and eccentric (ECC) squat force and power, as well as maximal voluntary isometric contraction force (MVIC) of knee extensors and flexors, were measured in every training session. Results: Significant quadriceps hypertrophy was detected during (IN: 5.5% ± 1.9%) and after (POST: 8.6% ± 3.6%) the training program. Increases in squat force (CON: 32% ± 15%, ECC: 31 ± 15%) and power (CON: 51% ± 30%, ECC: 48% ± 27%) were observed over the training program. Knee extensor MVIC significantly increased 28% ± 17% after training, but no changes were seen in knee flexor MVIC. No correlation was found between regional muscular activation in the first session and the % of increase in regional CSAs (r = -0.043, P = 0.164). Conclusion: This study reports the earliest onset of whole-muscle hypertrophy documented to date. The process initiates early and continues in response to RT, contributing to initial increases in force. The results call into question the reliability of mfMRI as a tool for predicting the potential hypertrophic effects of a given strengthening exercise.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...